668. Molecular Polarisability. The Molar Kerr Constants, Dipole Moments, etc., of Isoprene, Polyisoprenes, and Some Related Hydrocarbons.

By R. J. W. Le Fèvre and K. M. S. Sundaram.

Comparisons of calculated and observed molar Kerr constants suggest (a) that 2 -methylbut-2-ene and isoprene are planar and that in the latter case the s-trans-form predominates, (b) that ocimene as a solute is extended with its three $\mathrm{C}=\mathrm{C}$ bonds nearly parallel to one another, and (c) that squalene and squalane may have helically coiled structures. Gutta-percha appears slightly more anisotropic than rubber.

The measurements here reported were started in the hope that information on the conformations adopted by various polyisoprenes as solutes in benzene could be obtained from measurements of electric double refraction and dielectric polarisation for such solutions, if considered in conjunction with parallel observations on molecules chosen as models of the presumed repeating units presumed in the polymer chains. None of the compounds now taken has been hitherto examined by a method involving the Kerr effect. The relations of 2 -methylbut-2-ene to rubber, and of squalene to the steroids, are points of obvious interest.

Experimental

Solutes.-Isoprene was obtained by dry distillation of natural rubber. ${ }^{1}$ The crude condensate, after removal of dipentene by repeated fractionation, was refluxed over a sodium dispersion for 2 hr . under dry nitrogen, and finally twice distilled through a jacketed Dufton column (b. p. $34 \cdot 1^{\circ}, n_{\mathrm{D}}{ }^{20} 1 \cdot 4216, d_{4}^{20} 0.6805$). Ocimene (b. p. $81^{\circ} / 30 \mathrm{~mm}$., $d_{4}^{25} 0.7948, n_{\mathrm{D}}{ }^{25}$ $1-4835$) was a gift from Mr. H. G. McKern, Deputy Director, Museum of Applied Arts and Sciences, Sydney. 2-Methylbut-2-ene was prepared by Norris and Reuter's method ${ }^{2}$ from t-pentyl alcohol; after drying over anhydrous magnesium sulphate, it was fractionally distilled (b. p. $38.5^{\circ}, d_{4}^{25} 0.65694, n_{\mathrm{D}}{ }^{25} 1.3846$). 2-Methylbutane was a commercial sample fractionated from a sodium dispersion (b. p. 27.9-30.0 $, d_{4}^{25} 0 \cdot 61455, n_{\mathrm{D}}{ }^{25} 1 \cdot 3507$). Squalene ($n_{\mathrm{D}}{ }^{25} 1 \cdot 4941$) and squalane ($n_{\mathrm{D}}{ }^{25} 1 \cdot 4509$) were pure products from the Eastman Kodak Co. Specimens of natural rubber (cis-polyisoprene) and gutta-percha (trans-polyisoprene) were presented by Slazengers (Aust.) Pty. Ltd.; each was extracted with acetone (Soxhlet) for 24 hr . under dry nitrogen,

[^0]Table 1.
Incremental values of $\Delta n, \Delta n^{2}, \Delta d, \Delta \varepsilon$, and ΔB for solutions in benzene * at 25°.

$10^{5} w_{2}$	$10^{4} \Delta n$	$10^{4} \Delta n_{2}$	$10^{5} \Delta d$	$10^{4} \Delta \varepsilon$	$10^{10} \Delta B$	$10^{5} w_{2}$	$10^{4} \Delta n$	$10^{4} \Delta n^{2}$	$10^{5} \Delta d$	$10^{4} \Delta \varepsilon$	$10^{10} \Delta$
		Solute:	Isoprene					Solute:	Ocimene		
439	-4	- 12	- 101	-12	-	2639	-10	-30	-260	47	32
860	-8	-24	-198	-26	1.5	4213	-16	-48	-402	75	53
1532	-14	-41	-349	-44	$2 \cdot 8$	6009	-23	-69	-587	106	74
1827	-17	-50	-420	-56	$3 \cdot 0$	7381	-27	-81	-700	131	95
2312	-21	-62	-539	-64	$4 \cdot 1$						

whence $\sum \Delta n / \sum w_{2}=-0.092 ; \sum \Delta n^{2} / \sum w_{2}=-0.271$;
whence $\sum \Delta n / \sum w_{2}=-0.038 ; \sum \Delta n^{2} / \sum w_{2}=-0.113$;
$\Sigma \Delta d / \sum w_{2}=-0.0963 ; \sum \Delta \varepsilon / \sum w_{2}=0.177 ;$
$\sum \Delta d / \sum w_{2}=-0.2306 ; \sum \Delta \varepsilon / \sum w_{2}=-0.290$;
$\Sigma \Delta B / \Sigma w_{2}=1.25_{5} \times 10^{-7}$.

Solute: 2-Methylbut-2-ene						Solute: 2-Methylbutane					
5499	-87	-261	-1584	-132	-8	5906	-110	-330	-2014	-350	-36
7548	-116	-347	-2169	-189	-	8963	-170	-508	-3138	-534	-50
8637	-135	-404	-2556	-225	-14	10,892	-204	-609	-3786	-667	-68
12,771	-199	-594	-3570	-294	-20	13,880	-262	-781	-4788	-797	-92
15,613	-242	-722	-4370	-390	-	16,016	-300	-893	-5484	-958	-106
19,159	-292	-869	-5310	-432	-27	18,594	-342	-1017	-6290	-1112	-132

whence $\sum \Delta n / \sum w_{2}=-0.155 ; \sum \Delta n^{2} / \sum w_{2}=-0.462 ; \quad$ whence $\sum \Delta n / \sum w_{2}=-0.187 ; \sum \Delta n^{2} / \sum w_{2}=-0.557$;
$\Sigma \Delta d / \sum w_{2}=-0.2825 ; \sum \Delta \varepsilon / \sum w_{2}=-0.240 ;$
$\Sigma \Delta B / \Sigma w_{2}=-0.15 \times 10^{-7}$.
$\Sigma \Delta d / \sum w_{2}=-0.3446 ; \sum \Delta \varepsilon / \sum w_{2}=-0.595 ;$
$\Sigma \Delta B / \Sigma w_{2}=-0.652 \times 10^{-7}$.
Solute: Squalene
Solute: Squalane

Solute: Squalene						Solute: Squalane					
3029	-6	-18	-116	33	3	5446	-40	-120	-601	-128	-12
5039	-12	-36	-190	53	5	7503	-55	-165	-791	-139	-17
6503	-14	-42	-231	74	6	9985	-70	-210	-1172	-159	-24
7764	-16	-48	-270	91	8	13,995	-108	-324	-1599	-183	-32
8698	-20	-60	-295	101	8	16,236	-	-	-	-272	-38
9745	-20	-60	-324	119	9	18,550	-140	-420	-2050	-346	-44
11,547	-22	-66	-380	138	10	22,011				-376	-50
12,474	-24	-72	-390	147	12	whenc	n / Σ	$=-0$	74; $\Sigma \Delta$	$\Sigma w_{2}=$. 2

$$
\begin{aligned}
& \text { Solute: Squalane } \\
& -120-601
\end{aligned}
$$

whence $\Sigma \Delta n / \sum w_{2}=-0.021 ; \sum \Delta n^{2} / \sum w_{2}=-0.063$;
$\Delta d=-0.0408 w_{2}+0.073 w_{2}{ }^{2} ; \Sigma \Delta \varepsilon / \sum w_{2}=0.116 ;$
whence $\sum \Delta n / \sum w_{2}=-0.074 ; \sum \Delta n^{2} / \sum w_{2}=-0.223$;
$\Sigma \Delta d / \Sigma w_{2}=-0.1120 ; \sum \Delta \varepsilon / \Sigma w_{2}=-0.171$;
$\Sigma \Delta B / \Sigma w_{2}=0.094 \times 10^{-7}$.

Solute:					
888	2	cis-Polyisoprene	$($ rubber)		
1156	-	-	-	-20	
1464	3	9	-	30	-27
1499	-	-	60	39	-
1701	4	12	68	44	-39
1915	-	-	74	49	-
2269	-	-	86	59	-50
2508	6	18	95	64	-
2953	7	21	-	-	-

Solute: trans-Polyisoprene (gutta-percha)
whence $\Sigma \Delta n / \sum w_{2}=0.023 ; \sum \Delta n^{2} / \sum w_{2}=0.069$;

505	-	-	-	-	-12
865	2	6	25	25	-25
1374	-	-9	-	37	-
1484	3	-		-52	
1908	-	-15		-35	-52
2394	5		67	-65	
2963	6	18	86	83	-
3243	8	24	91	90	-

whence $\sum \Delta n / \Sigma w_{2}=0.022 ; \Sigma \Delta n^{2} / \Sigma w_{2}=0.066$; $\sum \Delta d / \sum w_{2}=0.0282 ; \sum \Delta \varepsilon / \sum w_{2}=0.280 ;$ $\Sigma \Delta d / \sum w_{2}=0.039 ; \Sigma \Delta \varepsilon / \sum w_{2}=0.258 ;$ $\Sigma \Delta B / \Sigma w_{2}=-2.26 \times 10^{-7}$.

Intrinsic viscosities in toluene at 25°.

Rubber					
$10^{4} \mathrm{C}$	11,253	14,136	17,040	20,433	23,437
$10^{5} d_{12}$	86,248	86,256	86,263	86,274	86,281
$10^{3} \eta_{\text {sp }}$	10,880	16,149	25,530	33,978	48,936
whence $\left[\eta_{8 p} / c\right]_{c \rightarrow 0}=\mathbf{4 . 5 7 1}$.					
Gutta-percha					
$10^{4} c$	9433	13,838	17,478	21,133	24,752
$10^{5} d_{12}$	86,283	86,302	86,316	86,338	86,359
$10^{3} \eta_{\text {ep }}$	1743	2850	3847	4930	6221
whence $\left[\eta_{\mathrm{ep}} / c\right]_{c \rightarrow 0}=1.549$.					

then dissolved in benzene, precipitated by methanol, and dried in vacuo. Their molecular weights were estimated viscosimetrically in toluene ($d_{4}^{25} 0 \cdot 86220$) at 25° in a modified Ostwald-Fenske-type viscometer with an efflux time of 73.4 sec . for the solvent. Intrinsic viscosities [η], obtained by plotting $\log \left[\eta_{\mathrm{sp}} / c\right]$ against c (the concentration of the polymer in g. per 100 ml . of solution) and extrapolation to infinite dilution, then gave molecular weights, via the equation ${ }^{3}$ of Wagner and Flory, $[\eta]=2.0 \times 10^{-4} \mathrm{M} ~(0.73$, as follows:

	[η]	" Viscosity " M	Degree of polymn.
cis-Polyisoprene .	$4 \cdot 571$	935,800	13,742
trans-	1.459	212,500	3125

Observations and Results Therefrom.-These are listed in Tables 1 and 2. Table 1 shows, for solutions each containing a weight fraction w_{2} of solute in benzene, the differences Δn, $\Delta n^{2}, \Delta d, \Delta \varepsilon$, and ΔB between the refractive indexes, the squares of the refractive indexes, the densities, the dielectric constants, and the Kerr effects, respectively, of the solutions and the solvent; all measurements have been made at 25°, the techniques adopted being those described in refs. 4 and 5. (Definitions of symbols and explanations of the calculations used here have also been recently summarised in this Journal. ${ }^{6}$) Polarisations, apparent dipole moments, molar Kerr constants, etc., deduced from Table 1 follow as Table 2.

Table 2.
Total polarisations and molar Kerr constants at infinite dilution, molecular refractions, and dipole moments calculated from Table 1.

Solute	M_{2}	$\alpha \varepsilon_{1}$	β	$\gamma^{\prime} n_{1}{ }^{2}$	$\begin{aligned} & \infty P_{2} \\ & (\text { c.c. }) \end{aligned}$	$\begin{gathered} R_{\mathrm{D}} \\ \text { (c.c.) } \end{gathered}$	$\mu(\mathrm{D})^{*}$	γ	δ	$10^{12} \infty\left({ }_{m} K_{2}\right)$
Isoprene	$68 \cdot 1$	-0.290	-0.2639	-0.271	$25 \cdot 6$	$\mathbf{2 5 . 3} \dagger$	(ca. 0?)	-0.061	$0 \cdot 427$	$9 \cdot 75$
Ocimene	$136 \cdot 2$	$0 \cdot 177$	-0.1102	-0.113	$56 \cdot 1$	47-7	0.54	-0.025	$3 \cdot 06$	$\mathbf{4 2 \cdot 4}$
2-Methyl-but-2-ene	$70 \cdot 1$	-0.240	-0.3233	-0.462	28.45	$24 \cdot 9$	$0 \cdot 34$	-0.104	-0.366	6.28
2-Methylbutane	72.15	-0.595	-0.3944	-0.557	26.2	26.04	0	-0.125	-1.59	1.21
Squalene	$410 \cdot 7$	$0 \cdot 116$	-0.0467	-0.063	155.5	$139 \cdot 1$	$0 \cdot 68$	-0.014	0.229	$38 \cdot 4$
Squalane	$422 \cdot 8$	-0.171	-0.1282	-0.223	$149 \cdot 0$	$141 \cdot 8$	0	-0.049	-0.566	$22 \cdot 3$
cis-Polyisoprene...	$935,800$	$0 \cdot 258$	$0 \cdot 0446$	$0 \cdot 069$	350,200	311,900	$33 \cdot 3$	0.015	$-5 \cdot 51$	-331,900
trans-Polyisoprene	$212,500$	$0 \cdot 280$	$0 \cdot 0323$	$0 \cdot 066$	81,290	71,580	$17 \cdot 2$	0.015	-6.44	-90,290

Discussion

In the following sections the solutes are discussed individually. Where practicable the observed molar Kerr constants will be compared with those calculable from possible molecular models, by using the anisotropic bond polarisabilities listed on p. 3 of ref. 7 together with the resultant dipole moments and other data as now measured.

2-Methylbut-2-ene.-Experiment gives $\mu_{\text {res }}$ and $\infty\left({ }_{m} K_{2}\right)$ for this substance as 0.34 D and 6.3×10^{-12}, respectively. Neither property has been previously reported. Computations (by the method described briefly in ref. $4 b$, or fully in ref. 8) for a flat structure (I) with trigonal CCC angles show that the maximum polarisability semi-axes b_{1} should be inclined $28^{\circ} 21^{\prime}$ to the double bond in the plane of the molecule. Details are given in

[^1]Table 3. The close approach of ${ }_{\mathrm{m}} K$ calc. to ${ }_{\mathrm{m}} K$ obs. suggests that the ellipsoid for $\mathrm{C}=\mathrm{C}$, although originally deduced from $\mathrm{CH}_{2}=\mathrm{CCl}_{2}$, is also satisfactory with non-halogenated

(I)
olefins; moreover, it appears that b_{1} and the direction of action of $\mu_{\text {res }}$ are nearly parallel to one another.

Table 3.
Semi-axes,* moment components, etc., for 2 -methylbut-2-ene as (I).

Direction cosines with \dagger				
	$O X$	$O Y$	$O Z$	
$b_{1}=1.098$	0.8800	-0.4749	0	$\mu_{1}=0.34 \mathrm{D}$
$b_{2}=0.911$	0.4749	0.8800	0	$\mu_{2}=0$
$b_{3}=0.799$	0	0	1	$\mu_{3}=0$

whence $10^{35} \theta_{1}=0.81,10^{35} \theta_{2}=0.74$, and $10^{12}{ }_{\mathrm{m}} K=6.5$.

[^2]Isoprene.-With hexane, heptane, or pentene as solvents, ${ }^{9}$ and from observations on the pure liquid, ${ }^{10}$ moments between 0 and 0.3 D have been reported for isoprene; in the vapour state, over the temperature range 358-477 ${ }^{\circ} \mathrm{K}$, Hannay and Smyth ${ }^{11}$ found $\mu=$ 0.38 D . The present appear to be the first measurements for solutions in benzene. They indicate a polarity well below $\mu_{\text {rapour }}$. when R_{D} is used as the distortion polarisation, $\mu=0.12 \mathrm{D}$; if ${ }_{\mathrm{D}} P$ is taken as $1.05 R_{\mathrm{D}}$, then $\mu=0$. Farmer and Warren, ${ }^{12}$ from the polarisation-temperature relationship for liquid isoprene, deduced μ as 0.15 D ; they noted that the total polarisation increased with rise of temperature. From Raman

spectra an equilibrium between an s-cis- (III) and an s-trans-form (II) has been inferred, ${ }^{13}$ with 10% and 15% of (II) in the mixture at -60° and $+50^{\circ}$, respectively.

Calculations of polarisabilities for these two planar models are in Table 4. The resultant moment observed is assumed to act in the $X O$ direction in both cases, but because of the uncertainty of such near-zero values the ${ }_{m} K$'s expected if $\mu_{\text {isoprene }}$ were 0 or 0.3 D are also given. The ${ }_{\mathrm{m}} K$ found is $9.7_{5} \times 10^{-12}$ but the predicted ${ }_{\mathrm{m}} K$'s for forms (II) and (III) are too close to one another and too small to justify a firm choice of the more appropriate; it seems, however, that even if μ is 0.3 D the solute cannot contain less than about 50% of form (II). When μ is taken as $0 \cdot 2 \mathrm{D}$, the ${ }_{\mathrm{m}} K$'s calc. and found are equal for the s-trans-form; with a still lower moment (e.g., $0 \cdot 12 \mathrm{D}$, as in Table 4) the $\mathrm{m}_{\mathrm{m}} K$

[^3]found exceeds the ${ }_{\mathrm{m}} K$ calc. for both (II) and (III), and thus strongly suggests a 100% content of form (II).

Table 4.
Semi-axes, molar Kerr constants, etc., for isoprene as (II) or (III).
Direction cosines with

Model II:		$O X$	OY	$O Z$	
	$b_{1}=1.162$	1	0	0	$\mu_{1}=0.12 \mathrm{D} *$
	$b_{2}=0.820$	0	1	0	$\mu_{2}=0$
	$b_{3}=0.721$	0	0	1	$\mu_{3}=0$
whence $10^{35} \theta_{1}=1.91,10^{35} \theta_{2}=0.15$, and $10^{12}{ }_{\mathrm{m}} K=8.6{ }_{6}$.					
Model III:	$b_{1}=1.068$$b_{2}=0.914$$b_{3}=0.721$	0.9744	0.2250	0	$\mu_{1}=0.12 \mathrm{D}^{*}$
		-0.2250	$0 \cdot 9744$	0	$\mu_{2}=0$
		0	0	1	$\mu_{3}=0$

whence $10^{35} \theta_{1}=1.08,10^{35} \theta_{2}=0.09_{5}$, and $10^{12}{ }_{\mathrm{m}} K=4.9_{4}$.

[^4]2-Methylbutane.-This molecule may assume an infinite number of conformations between the four extremes (IV)-(VII). In (IV) the bisector of angle $\mathrm{C}_{(1)}-\mathrm{C}_{(3)}-\mathrm{C}_{(2)}$ is trans to the $\mathrm{C}_{(4)}-\mathrm{C}_{(5)}$ bond and lies in the plane of $\left.\mathrm{C}_{(3)}\right)^{-\mathrm{C}_{(4)}}$
 and $\mathrm{C}_{(4)}-\mathrm{C}_{(5)} ;(\mathrm{V})$ is as (IV) but with the said bisector cis to $\mathrm{C}_{(4)}-\mathrm{C}_{(5)}$; in (IV) and (V) the imaginary line $\mathrm{C}_{(1)} \cdots \mathrm{C}_{(2)}$ is perpendicular to the plane containing the $\mathrm{C}_{(3)}-\mathrm{C}_{(4)}-\mathrm{C}_{(5)}$ bonds. In (VI) or (VII) the link $\mathrm{C}_{(2)}-\mathrm{C}_{(3)}$ is trans or cis, respectively, to $\mathrm{C}_{(4)}-\mathrm{C}_{(5)}$ and coplanar with $\mathrm{C}_{(3)}-\mathrm{C}_{(4)}$ and $\mathrm{C}_{(4)}-\mathrm{C}_{(5)}$. Arbitrary axes are placed so that $O X$ is parallel to $\mathrm{C}_{(3)}-\mathrm{C}_{(4)}$ and $O Z$ at 90° to $O X$ in the $\mathrm{C}_{(3)}-\mathrm{C}_{(4)}-\mathrm{C}_{(5)}$ plane. The calculated polarisabilities and their locations are given in Table 5.

Table 5.
Polarisability semi-axes, molar Kerr constants, etc., for four conformations of 2-methylbutane.

Model(IV)	Principal polarisabilities	Direction cosines with			Model(VI)	Principal polarisabilities	Direction cosines with		
		OX	OY	OZ			OX	OY	$O Z$
	$b_{1}=0.932$	$0 \cdot 7912$	0	0.6115		$b_{1}=0.966$	$0 \cdot 8192$	0	0.5736
	$b_{2}=0.973$	0	1	0		$b_{2}=0.946$	0	1	0
	$b_{3}=1.012$	-0.6115	0	0.7912		$b_{3}=1.005$	-0.5736	0	0.8192
whence $10^{35} \theta_{1}=0.057 ; 10{ }^{12} K=0.24$.					whence $10^{35} \theta_{1}=0.032 ; 10^{12}{ }_{\mathrm{m}} \mathrm{K}=0.135$.				
(V)	$b_{1}=0.962$	1	0	0	(VII)	$b_{1}=0.996$	$1$$0$		0
	$b_{2}=0.973$	0	1	0		$b_{2}=0.946$	0	1	0
	$b_{3}=0.982$	0	0	1		$b_{3}=0.975$	0	0	1
whence $10^{35} \theta_{1}=0.003 ; 10^{12}{ }_{\mathrm{m}} K=0.013$.					whence $10^{35} \theta_{1}=0.022 ; 10^{12}{ }_{\mathrm{m}} K=0.093$.				

All the ${ }_{\mathrm{m}} K$'s thus predicted are less than the small value $\left(1.21 \times 10^{-12}\right)$ measured; the nearest is that calculated for (IV), the conformation which seems most reasonable on steric grounds. Very low ${ }_{\mathrm{m}} K$'s of non-polar solutes are difficult to determine with precision and their origins are uncertain (e.g., they may arise from θ_{3} terms, ${ }^{14,15}$ as in the cases of

[^5]methane, carbon tetrachloride, and tetrabromide, etc., the apparent ${ }_{m} K^{\prime} \mathrm{s}$ of which are $0.395 \times 10^{-12}, 1 \cdot 1_{5} \times 10^{-12}$ and 7.3×10^{-12}; they may also in part contain θ_{2} terms due
(VIIIa)

(VIIIb) to moments now being found for molecules previously considered as non-polar-reports that isobutane ${ }^{16}$ has $\mu=0.132 \mathrm{D}$ and that even propane ${ }^{17}$ has $\mu=0.083 \mathrm{D}$ are relevant to the present work.

Ocimene.-The observed ${ }_{m} K$ for this dimer of isoprene is 42.4×10^{-12}; to achieve such a value by calculation from bond anisotropies the three $\mathrm{C}=\mathrm{C}$ links must be nearly parallel to one another. Neither of the text-book formulæ (VIIIa) and (VIIIb) can therefore represent accurately the conformation of ocimene as a solute. Internal rotations to produce parallelism can be made in both, but extended planar forms,

(VIlIc)
likely to provide the highest predictable molar Kerr constants, are only derivable from (VIIIa). Accordingly, as an example of these, we consider model (VIIIc), in which $O X$ and $O Y$ are placed to that $O X$ is parallel to the double bonds and $O Y$ is perpendicular to $O X$ in the molecular plane. Computations yield the following results:

$$
\begin{array}{ll}
b_{1}=2.186(\text { along } O X) ; & \mu_{1}=0.54 \mathrm{D} \\
b_{2}=1.677(\quad, \quad O Y) ; & \mu_{2}=0 \\
b_{3}=1.417(\quad, \quad O Z) ; & \mu_{3}=0
\end{array}
$$

whence $10^{35} \theta_{1}=5 \cdot 46,10^{35} \theta_{2}=4 \cdot 89$, and $10^{12}{ }_{\mathrm{m}} K=43.5$.
Since the greatest calculable ${ }_{\mathrm{m}} K$ is being sought, $\mu_{\text {res }}$ is applied along $O X$; other directions of action or non-planar variants of (VIII) produce lower estimates of ${ }_{m} K$ calc.

Squalene.-This acyclic dihydrotriterpene $\mathrm{C}_{30} \mathrm{H}_{50}$, having ${ }^{18}$ the structure (IX) in which two equal halves of the molecule are

$$
\left(\mathrm{Me}_{2} \mathrm{C}: \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \mathrm{CMe}: \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CMe}: \mathrm{CH} \cdot \mathrm{CH}_{2}\right)_{2} \quad(\mathrm{IX})
$$

united by isoprene units joined tail-to-tail, was considered to be the all-trans-stereoisomer by Nicolaides and Laves. ${ }^{19}$ As a solute it cannot be fully extended since in any such arrangement the double bonds would produce a high anisotropy inconsistent with the ${ }_{\infty}\left({ }_{m} K_{2}\right)$ actually observed. In fact, squalene has a molar Kerr constant (38.4×10^{-12}) resembling in order of magnitude those ${ }^{8}$ calculated and found ($41 \times 10^{-12}, 44 \times 10^{-12}$) for cholest-5-ene, a coincidence recalling the role of (IX) as a cholesterol precursor ${ }^{20}$ in animal organisms, and Robinson's remark ${ }^{21}$ that (IX) can be coiled into a "steroid" arrangement, as in (IXa).

In relation to the last point we note that if squalene is assumed to adopt the stereostructure of cholest-5-ene and appropriate subtractions and additions of bond polarisability data are made in the calculations recorded in ref. 8 for cholest- 5 -ene (the process is simplified by regarding the polarisabilities of the bonds being interchanged or removed

[^6]as equally distributed over b_{1}, b_{2}, and b_{3}), then, if $\mu_{\text {res }}$ acts in the b_{1} direction, we have for squalene:
\[

$$
\begin{array}{ll}
b_{1}=5 \cdot 493 ; & 10^{35} \theta_{1}=3 \cdot 18 \\
b_{2}=5 \cdot 307 ; & 10^{35} \theta_{2}=4 \cdot 68 \\
b_{3}=4 \cdot 908 ; & 10^{12}{ }_{\mathrm{m}} K \text { calc. }=33 \cdot 1
\end{array}
$$
\]

The ${ }_{m} K$ so reached is fairly close to that from experiment $\left(38.4 \times 10^{-12}\right)$. However, the result may be fortuitous because squalene, being acyclic, would probably be less flat than a steroid--the tendency for $\mathrm{C}-\mathrm{H}$ links on the $\mathrm{C}-\mathrm{C}$ bonds $4^{-5}, 8^{-9}, 12-13,16^{-17}$, and $20-21$ to be staggered being a responsible factor. A model of form (IX) constructed by making symmetrical rotations in opposite directions about the five $\mathrm{C}-\mathrm{C}$ bonds just mentioned yields a helix for which a polarisability ellipsoid of revolution appears adequate. Accordingly, from the experimental quantities in Table 2, we have $\theta_{1}+\theta_{2}=9 \cdot 132 \times$ $10^{-35}, b_{1}+2 b_{2}=15.714 \times 10^{-23}$, and $b_{1}-b_{2}= \pm 0.504 \times 10^{-23}$; with the positive value of $b_{1}-b_{2}$, an estimate of the molecular semi-axes emerges as $b_{1}=5 \cdot 574$, and $b_{2}=b_{3}=$ $5 \cdot 070$. If now the b_{2} and b_{3} semi-axes for 2-methylbut-2-ene (Table 3) are regarded as both equal to their mean ($0 \cdot 855$), and a helix is built from six molecules of (I), each less the requisite number of $\mathrm{C}-\mathrm{H}$ bonds, joined appropriately by five $\mathrm{C}-\mathrm{C}$ links, a polarisability of $5 \cdot 574$ results when the greater axes of the eleven component ellipsoids are inclined at ca. 45° to the helical axis. From a model such an angle appears reasonable.

Squalene.-By arguments parallel to those used with squalene we have (a), when appropriate bond substitutions are made in cholest-5-ene:

$$
\begin{aligned}
& b_{1}=5.734 ; \quad 10^{35} \theta_{1}=4.02 \\
& b_{2}=5.538 ; \quad \theta_{2}=0 \\
& b_{3}=5 \cdot 080 ; \quad 10{ }^{12}{ }_{\mathrm{m}} K=17 \cdot 0
\end{aligned}
$$

or (b), if the polarisability ellipsoid is regarded as one of revolution and the observed ${ }_{\mathrm{m}} K$ and R_{p} are treated accordingly: $\theta_{1}=5.303 \times 10^{-35}, b_{1}+2 b_{2}=16.018$, and $b_{1}-b_{2}=$ $\pm 0 \cdot 668$, whence (for the positive value of $b_{1}-b_{2}$) $b_{1}=5.784$ and $b_{2}=b_{3}=5 \cdot 116$. The anisotropy of squalane must, since the molecule is saturated, be largely caused by the twenty-three carbon-carbon bonds in the main chain. A helical model is readily constructed in which the helix axis is roughly perpendicular to the six $\mathrm{C}-\mathrm{Me}$ bonds and ca . 40° to each skeletal $\mathrm{C}-\mathrm{C}$ bond; calculation for such a structure gives $b_{1}=5 \cdot 8$ and $b_{2}=$ $b_{\mathbf{3}}=\mathbf{5} \cdot 1$, fitting the solution (b) above, and of interest in relation to Mumford's postulated helical arrangement ${ }^{22}$ of n-alkane chains for which angles of $36-37^{\circ}$ were forecast.

Poly-cis- and Poly-trans-isoprene (Rubber and Gutta-percha).—Apparent dipole moments of rubber in benzene as listed by Wesson ${ }^{9}$ vary between $c a .14$ and $c a .58 \mathrm{D}$ and seem to be affected by milling and other pretreatment; the value 33 D now found for a specimen of $M 936 \times 10^{3}$ is comparable to the $27-33 \mathrm{D}$ reported by Ostwald and Riedel ${ }^{23}$ for milled crepe. Ref. 9 contains no entry for gutta-percha. Recalculated on a monomer molecular-weight basis, the moments of rubber and gutta-percha given in Table 2 become 0.28 and 0.31 D , respectively, i.e., close to the μ observed for (I). The corresponding quotients $\mu_{\text {app }}^{2} / x \mu_{0}^{2}$ (where x is the degree of polymerisation and $\mu_{0}=0.34 \mathrm{D}$) are 0.70 and $0 \cdot 82$, suggesting that the methylbutene units are differently hindered in the two macromolecules.

Rubber and gutta-percha are the first polyisoprenes for which negative molar Kerr constants have been noted. If their conformations as solutes are flexed versions of those,

[^7]basically helical, ${ }^{24}$ which occur in the solid state, we may assume for the dissolved species polarisability ellipsoids for which $b_{1} \neq b_{2}=b_{3}$; if also $\mu_{\text {res }}$ acts parallel to b_{1}, the data in Table 2 yield differences ($b_{1}-b_{2}$) of -2.714 and -2.764 for the two polymers, respectively; division by the degrees of polymerisation then shows gutta-percha to be slightly more anisotropic than rubber.

The present results are qualitatively as expected for polyisoprenes built from isomeric di-isoprene units, disposed as illustrated in Figs. 56, 57, and $\mathbf{6 1}$ of ref. 25, which are less extended and less planar in rubber (identity period $8.2 \AA$) than in gutta-percha (identity period $8.7 \AA$).

Grateful acknowledgment is made to the University of Sydney for the award of a Gritton Fellowship to K. M. S. S.

University of Sydney, N.S.W., Australia. [Received, December 3rd, 1962.]
${ }^{24}$ Natta and Corradini, J. Polymer. Sci., 1959, 39, 29; Bunn, Proc. Roy. Soc., 1942, A, 180, 40, 67, 82; "Chemical Crystallography," Clarendon Press, Oxford, 1946, pp. 317-329; Jeffrey, Trans. Faraday Soc., 1944, 40, 517; Robertson, Ann. Reports, 1942, 39, 108; Fraga, J. Polymer. Sci., 1959, 41, 522; Fisher, Proc. Phys. Soc., 1953, 66, B, 7.
${ }_{25}$ Meyer, "Natural and Synthetic High Polymers," Interscience Publ., Inc., New York, Vol. IV, 1942, pp. 129—136.

[^0]: ${ }^{1}$ Bassett and Williams, $J ., 1932,2324$.
 ${ }^{2}$ Norris and Reuter, J. Amer. Chem. Soc., 1927, 49, 2630.

[^1]: ${ }^{3}$ Wagner and Flory, J. Amer. Chem. Soc., 1952, 74, 195.
 ${ }^{4}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem., 1955, 5, 261; (b) Chap. XXXVI, in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., Vol. I, p. 2459.
 ${ }^{5}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953, Chapter 2; Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, $J ., 1956,1405$.
 ${ }^{6}$ Le Fèvre and Sundaram, J., 1962, 1494.
 7 Le Fèvre, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1.
 ${ }^{8}$ Eckert and Le Fèvre, J., 1962, 1081.

[^2]: * Molecular and bond polarisabilities quoted throughout Tables and text as 10^{-23} c.c. units. $\dagger O X$ and $O Y$ are in the molecular plane with $O X$ parallel to $\mathrm{C}=\mathrm{C} ; O Z$ is perpendicular to $O X$ and $O Y$.

[^3]: ${ }^{9}$ Wesson, " Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.
 ${ }^{11}$ Altschuller, J. Phys. Chem., 1953, 57, 538.
 ${ }_{11}$ Hannay and Smyth, J. Amer. Chem. Soc., 1943, 65, 1931.
 12 Farmer and Warren, J., 1933, 1297.
 ${ }^{13}$ Volkenstein, Nikitin, and Yakovleva, Izvest. Akad. Nauk S.S.S.R., Ser. Fiz., 1950, 14, 471 ; Nikitun and Yakovleva, Zhur. fiz Khim., 1954, 28, 692.

[^4]: * If $\mu_{1}=0$, the ${ }_{\mathrm{m}} K^{\prime}$ s calc. become $8.0_{3} \times 10^{-12}$ and 4.53×10^{-12}, respectively, or, with $\mu=0.3 \mathrm{D}$, 11.9×10^{-12} and $7 \cdot 0_{2} \times 10^{-12}$.

[^5]: ${ }^{11}$ Lee Fèvre, Le Fèvre, and Rao, $j ., 1956,708$.
 ${ }^{15}$ L.e Fèvre and Le Fèvre, J., 1959, 2670.

[^6]: ${ }^{16}$ Maryott and Birnbaum, J. Chem. Phys., 1956, 24, 1022.
 ${ }_{17}$ Lide, J. Chem. Phys., 1960, 33, 1514.
 18 Karrer and Helfenstein, Helv. Chim. Acta, 1931, 14, 78.
 ${ }^{10}$ Nicolaides and Laves, J. Amer. Chem. Soc., 1954, 76, 2596.
 20 Heilbron, Kamm, and Owens, J., 1926, 1630; Channon, Biochem. J., 1926, 20, 400; Bloch and Woodward, J. Amer. Chem. Soc., 1953, 75, 2023; Bloch and Langdon, J. Biol. Chem., 1953, $200,135$.
 ${ }_{21}$ Robinson, Chem. and Ind., 1934, 53, 1062.

[^7]: ${ }^{22}$ Mumford, $J_{\text {., 1952, }} 4897$.
 ${ }^{23}$ Ostwald and Riedel, Kolloid-Z., 1932, 59, 150.

